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Abstract— The Scalable Tools Communication Infras-
tructure (STCI) is an open source collaborative effort
intended to provide high-performance, scalable, resilient,
and portable communications and process control services
for a wide variety of user and system tools. STCI is aimed
specifically at tools for ultrascale computing and uses a
component architecture to simplify tailoring the infras-
tructure to a wide range of scenarios. This paper describes
STCI’s design philosophy, the various components that will
be used to provide an STCI implementation for a range
of ultrascale platforms, and a range of tool types. These
include tools supporting parallel run-time environments,
such as MPI, parallel application correctness tools and
performance analysis tools, as well as system monitoring
and management tools.

I. INTRODUCTION

A large number of tools exist to help application
developers use high-performance computing systems [1].
Many such tools have been developed as standalone
tools, each aimed at solving a specific problem and pro-
viding its own run-time support infrastructure, but with
little consideration for interoperability with other tools
providing complementary capabilities. Such tools tend
to be system or architecture specific and hence are more
difficult to port and less useful. Some standardization has
occurred to help tool developers with their infrastructure
requirements. For example, the PAPI project [2] provides
a portable interface to system performance data, and the
MPI standard [3] provides a communications API. How-
ever, little standardization exists for allocating resources,
launching parallel jobs, attaching a tool to a parallel job,
monitoring, cleanup, and many other services required
by tools. Recently [4] [5] it has been recognized that
providing a common and portable set of infrastructure

services will be essential for enabling more extensive
tool capabilities and new types of analysis tools to be
created. Ultrascale systems (petascale and beyond) in
particular will place much greater demands on scalability
and robustness of these low-level infrastructure services
if efficacious tools are to be built for such systems.

Since the terms tool, application, run-time, and in-
frastructure can have a wide variety of meanings, it is
important to clearly define what we mean by these terms.
We use the term tool in a broad sense, to denote anything
that aids application developers and users in achieving
their goal of using the computer system to obtain their
desired data. This covers a wide range of functionality,
including tools to help users write their computer codes
and analyze their correctness and performance charac-
teristics, tools that manage parallel jobs, and tools that
are used to analyze and manage the computer system.
We use application to mean a user-initiated program that
will consume computing (and other) resources in order to
achieve a desired outcome. We use the run-time to refer
to the software component of a computer system that is
responsible for launching, monitoring, and terminating a
parallel application, as well as managing the low-level
communications between application processes. We use
the term infrastructure to mean those services that are
common across a broad set of tools, such as acquiring
resources, launching a parallel application, launching a
tool, sending data between cooperating tool processes,
and even providing graphical user interface primitives.

The STCI collaboration was formed to address tools
infrastructure needs at the ultrascale. This includes an
application programming interface (API) that is inde-
pendent of system architecture and an implementation
design that is guided by ultrascale and multi-tool require-



ments. Neither of these characteristics precludes efficient
implementations aimed at the common scale. However,
our efforts are focused on the ultrascale. STCI services
will provide full parallel job life-cycle management and
the communications support infrastructure needed to
develop highly scalable tools. We elected to provide
a rich set of communication primitives to service a
wide range of communications patterns, including an
emerging need for multicast/reduction-style communica-
tions. The implementation focuses on high performance,
scalability, robustness, and portability. Highlights of the
infrastructure capabilities include the following:

• A multicast/reduction-style network for scalable
communication between a tool user interface and
data sources and sinks. This enables the tool to
efficiently communicate with large numbers (hun-
dreds of thousands or millions) of independently
executing processes and provides a customizable
mechanism for data broadcast and aggregation.

• Primitives to support aggregate and point-to-point
communication that can be used for efficient startup
and intertool communication.

• Scalable system resource management services that
enables the tool to obtain and manage the required
resources through an abstract interface.

• Tool lifecycle management that will control all
aspects of the tool operation, from launch to final
shutdown.

The design incorporates a modular component-based
architecture to simplify development, deployment, and
installation of the infrastructure on a wide variety of
ultrascale systems.

The remainder of this paper is organized as follows.
Section II presents previous effort for the specifica-
tion and implementation of scalable run-times for high-
performance computing; Section III presents an overview
of the STCI architecture; Section IV presents STCI com-
ponents for the management of the tool and infrastructure
lifecycle; Section V presents components for session
management; Section VI presents components for com-
munications; Section VII presents components for state
persistency; and Section VIII presents components for
security. Section IX summarizes the STCI infrastructure.

II. BACKGROUND

To date there have been a number of other develop-
ment efforts to provide infrastructure for parallel tool
development, although many of these provide support
only for a single tool. Many MPI implementations come
with their own run-time support, such as LA-MPI’s
run-time [6], MPICH’s Process Management Interface
(PMI) [7], and Open MPI’s Open Run Time Environment
(ORTE) [8]. Some of these attempted to provide general-
purpose run-time support; but since these were really

developed in the context of a limited number and type
of target tools, they did not meet that goal. A few pro-
prietary implementations of MPI are also available, such
as IBM’s Parallel Environment [9], and HP-MPI [10],
but these rarely provide interfaces that are available
for external tools. The Totalview [11] and DDT [12]
parallel debuggers provide the infrastructure to deploy
debug agents on distributed-memory architectures, then
enable these agents to attach to running applications.
For MPI jobs, this typically requires support from each
MPI implementation (generally known as the Totalview
startup mechanism). The infrastructure is also proprietary
and not open for other tools to use. The PTP scalable
debug manager (SDM) [13] provides an open source
framework but relies on external run-time support for
launch services. Various parallel performance analysis
tools (TAU [14], HPCToolkit [15], etc.) also exist that
either use available infrastructure, or provide simple
rsh/ssh based launchers for data collection. None of these
systems has successfully addressed scalability in ultra-
scale environments.

Few infrastructures have been designed specifically for
third-party tool development and deployment. Notable
exceptions are Tool Gear [16] and MRNet [17]. Of these,
only MRNet has targeted scalability, but only from the
limited perspective of scalable communication between
a large number of tool processes. Neither provides any
mechanism for tool and application launch, monitoring,
or other STCI services.

By addressing the specific issues of interoperability,
portability, and scalability of high-performance comput-
ing (HPC) run-time support, STCI fills a significant
gap that has existed in the HPC software stack for a
considerable time.

III. OVERVIEW

In the ultrascale environment, monolithic tools are no
longer a feasible option. Instead, a tool must comprise
a number of cooperating parts that collectively achieve
the functionality that the tool has been designed for. This
tool model underpins the architecture that tool designers
will need in order to effectively use the STCI services.
In this model, the three parts that collectively make up
a tool are as follows:

• A tool front-end. This is the part of the tool that
typically interacts with user, such as a Tool’s GUI.
A tool front-end interacts with STCI via the front-
end API.

• One or more tool agents. Tool agents provide the
means for the tool to interact with the outside world.
For example, tool agents are used by a debugger
to control application process or by a performance
tool to monitor and collect tracing an profiling
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Fig. 1. STCI tool model.

information. The tool agents interact with STCI via
the agent API.

• One or more tool junctions. Tools that must interact
with many agents or process large volumes of data
use a multicast/reduction-style network [17]. The
tool junctions can be used to aggregate, filter, mod-
ify, and transform messages sent between the front
end and the agents in order to provide an efficient
mechanism for dealing with scalability issues.

While technically the tool developer needs to supply
only the front end, in an ultrascale environment a tool
will typically provide agents and junctions as well. STCI
is then used to connect these tool components together.
Figure 1 shows how the parts of the tool are related in
the model.

The infrastructure provided by STCI is responsible
for managing the interactions between the tool parts
and the external computing environment via a range of
services and activities that are undertaken in response to
tool initiated actions, external events, or communication
requests.

Tools interact with STCI through a set of APIs that
define the services that STCI provides. The APIs are an
abstraction the tool developer uses to interact with the
target system or application. In addition to this abstrac-
tion, STCI provides an implementation that supports a
range of different systems and architectures. Since the
infrastructure is designed to provide robust and high-

performance services for ultrascale platforms, it includes
services that may not be required at more modest scales.
In addition, the services needed to help tools scale well
on these large systems depend on the underlying hard-
ware support for scalability and reliability. Therefore,
the STCI services will be separated into mandatory and
optional. Tools wishing to use optional services will
need to verify that these services are available in the
implementation they are using.

We use a hierarchical component framework that
enables different implementations of component subsys-
tems to be used or additional functionality added (such
as support for a new job scheduler or network inter-
face) without requiring changes to any of the existing
components. The component architecture employed by
STCI will largely follow that used by the Open MPI
project [18] and other dynamic component frameworks,
such as OSGi [19]. These frameworks typically have the
following characteristics:

• A service registry that provides a repository for
component descriptions and that supports compo-
nent publishing and discovery.

• A component interface definition that specifies a
contract between the component and other compo-
nents that wish to employ its services.

• A component life cycle that defines the phases
of a component’s existence. These phases usually
correspond to installation, initialization, activation,
deactivation, finalization, and uninstallation.

• A mechanism for resolving dependencies between
components.

At the top level of the hierarchy is a logical group-
ing of components that provide related services. These
services include the following:

• Execution Contexts. Components in this group
are responsible for tool and infrastructure lifecycle
management, process execution management, and
system resource management. In response to a
tool launch request, STCI will undertake the ac-
tivities required for infrastructure startup/shutdown
(bootstrapping), staging tool components, start-
ing/stopping tool execution, and establishing com-
munication between the infrastructure and tool com-
ponents. When a tool requires resources for oper-
ation, STCI will manage the discovery, allocation,
and deallocation of system or network resources by
interacting with job schedulers, run-time systems or
other external resource allocation mechanisms. The
execution context components are discussed in more
detail in Section IV.

• Sessions. All interactions between a tool and STCI
are defined in the context of a session. A session
must be established by the tool front end before



any other activities can take place. STCI sessions
are discussed in more detail in Section V.

• Communications. Communications are required
for many aspects of infrastructure and tool oper-
ation. A range of communication primitives for
point-to-point, group, and multicast/reduction oper-
ations are available for tool implementations. The
STCI communication infrastructure is discussed in
more detail in Section VI.

• Persistence. Components in this group are respon-
sible for managing persistent state information, such
as publish/subscribe services, information required
for attaching and detaching front ends, and session
and tool agent location. Persistence is discussed in
more detail in Section VII.

• Security. STCI must ensure that the policies and
procedures of the local security domain are met.
These include activities such as the authentication
and management of user credentials and authoriza-
tion of activities that will be undertaken on behalf
of the user. The security components and services
are discussed in more detail in Section VIII.

The set of services deployed on a given system is ex-
pected to depend on local system policies. For example,
some systems allow permanent root-level daemons to run
on the system, whereas some don’t. Other system char-
acteristics, such as the native process startup mechanism,
will affect the types of services that are available.

In the remaining sections, we describe services that
will be provided as part of the STCI reference implemen-
tation. Component implementation details and interface
definitions are beyond the scope of this paper.

IV. EXECUTION CONTEXTS

Execution components are responsible for the three
phases of running a parallel tool:

1) Managing the life cycle of the infrastructure, in-
cluding the installation and deployment of the
STCI services framework

2) Interacting with the system resource management
services to obtain resources, such as processing
elements (which we call locations), required by the
tool and associated parallel application

3) Managing the life cycle of the tool and application
run

STCI provides three sets of components, one for
each of the phases of running a parallel tool. These
are components for bootstrapping, resource management,
and execution context management.

The bootstrapping components are responsible for
both system-level infrastructure operation and bootstrap-
ping the infrastructure required for the parallel tools, as
these share many common characteristics. They provide

the means to install and uninstall system-level and user-
level STCI resources and use these resources for tool
startup. In addition, several modes of user-level job
startup and control are provided to suit different system
requirements:

• Infrastructure installed as a system service, with
tool startup occurring using deployed system-level
service agents (typically these will be daemon pro-
cesses) and a UNIX-style setuid approach to support
multiple concurrent users.

• User-level installation of service agents, which are
used for tool startup.

• Parallel tool run-time bootstrap of the STCI infra-
structure.

On systems that support service agents, these will be
deployed to provide services such as standard I/O manip-
ulation and tool-level process monitoring. Depending on
the target system architecture, these may also be used to
start the tool agents. In some cases a different native
mechanism will be required to start the tool agents.
These components also provide for an orderly shutdown
of STCI management resources, for both expected and
abnormal parallel application termination.

The resource management components are responsible
for discovering what resources are available for use.
They interact with the system resource manager and run-
time to find out what resources are available, allocate
these resources, and query to see what resources were
actually allocated. The instantiation of these steps is
system specific, as individual systems may combine
some or all of these activities into a single activity, with
the STCI infrastructure left to discover what resources
have been acquired and which are in use.

The execution context management components man-
age the execution contexts (or running processes), within
the STCI framework. They monitor execution, respond
to changes in execution context such as process failure or
orderly shutdown, and initiate changes to these execution
contexts such as ordered or forceful shutdown. Since
application launching is highly system-specific, a range
of components will be available to cater to these system
differences.

Since the class of tools we are targeting is focused
on ultrascale environments, the base design provides
the features needed in such extreme computing environ-
ments. High performance, scalability, and fault tolerance
are key elements in the design. High performance in
the context of lifecycle management is addressed by
separating bulk allocation of resources at startup from
single-event type operations, such as response to failure
of a parallel tool’s single execution context. Managing
the state information obtained at startup, which is needed
to respond to run-time tool failures, is largely decoupled
from process startup. Scalability of run-time is achieved



by taking advantage of group operations at startup and
termination, by localizing run-time monitoring of the
running tool, and by providing group communications
operations that can be used in process-control operations.
Scalable resource utilization is achieved by having sparse
network connectivity, conserving the resources needed
to manage these resources. Fault tolerance is enabled by
providing a publish/subscribe system to help keep track
of the state of the system, letting the persistent state
components know when an execution context fails, if
these have registered for such events. In return, these
components inform the execution context components
how to respond to this failure, whether to attempt some
sort of recovery or to shut down the parallel tool. In addi-
tion, redundant connectivity is used in the administrative
network, to help survive network failures. In general,
a modular design is used so that capabilities, such as
support for fault tolerance, can be tailored for specific
use case scenarios and can be deployed incrementally.

V. SESSIONS

All activities undertaken by a tool are carried out in
the context of sessions. To create a session, the tool must
provide an authenticated set of user credentials. Sessions
persist until they are no longer needed by the tool. Each
session comprises a resource allocation (where resources
can mean any physical resources required by the tool,
such as CPUs or network adapters), a set of tool agents,
and a description of how the agents are mapped onto the
resources.

Sessions can also contain a number of streams. A
stream connects the front end to one or more agents,
optionally via one or more junctions. Figure 2 shows the
structure of a typical stream. The junctions can be used
to modify messages passing through them, for example,

A A

J

A A

J

J

FE

Fig. 2. Stream connecting the front end (FE) to agents (A) via
junctions (J).

junctions can aggregate or filter messages sent from
agents to the front end or can distribute messages sent
from the front end to the agents.

The tool controls how the junctions, agents, and front
end are connected by specifying a topology. STCI pro-
vides predefined topologies (e.g., a binary tree topology)
but custom topologies can also be defined by the tool.
The topology is then mapped onto a set of resources.
STCI can automatically map junctions and agents to
available resources; however, it is often useful for the
tool to be able to specify where specific agents or
junctions are to be located. STCI allows the tool to
specify specific resources ( e.g., node3141) or just a class
of resources (e.g., any node with a local disk) where
agents or junctions are to be deployed.

Figure 3 shows a topology being mapped onto re-
sources to produce a stream. In the figure, jn are the
set of tool junctions, an are the set of tool agents, and
rn are the allocated resources. The stream comprises
a connected set of junctions and agents mapped to
resources jnrn and anrn respectively.

The set of junctions, the topology describing the
layout of junctions and the mapping of the junctions onto
resources are all managed in the context of a session.

VI. COMMUNICATIONS

Supporting tool communication is the main purpose
of STCI. It is therefore critical that STCI provide high-
performance, scalable, fault-tolerant communication op-
erations. Furthermore, the communication programming
interface needs to be flexible and easy to use. STCI
provides an active-message [20] communication pro-
gramming interface that allows for a high-performance
implementation that fits well with the asynchronous com-
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Fig. 3. A stream is constructed by mapping a topology onto a set
of resources.



munication patterns of interactive and data aggregation
operations performed by tools.

Communication in STCI, whether point-to-point or
group communication, is performed over a stream.
Streams can support different levels of reliability and
ordering guarantees to allow tools to trade reliability and
ordering for performance and scalability. A tool will typ-
ically have multiple streams, each used to communicate
with different subsets of agents or to transfer different
classes of data. It is expected that stream communication
will be the primary communication method for most
tools.

A group communication, such as broadcast, reduction,
or allgather, is performed over a stream by implementing
junctions to perform the operations. As a convenience,
STCI includes built-in group communication streams
that provide optimized implementations of certain group
communication operations.

STCI provides operations to allow complex datatypes
to be described efficiently by the tool. These operations
allow noncontiguous data to be described so that it
can be efficiently communicated. The ability to describe
datatypes is necessary to support communication in
an environment with heterogeneous architectures. STCI
uses the datatype description to convert the binary repre-
sentations of the basic datatypes from the sender’s format
to the receiver’s format. This conversion operations is
performed transparently to the user.

VII. PERSISTENCE

Persistent state is maintained by STCI to help preserve
internal consistent state, to restore the infrastructure to
a consistent state, and to provide the facilities for front-
ends to disconnect and reconnect to a running parallel
tool without negatively impacting this tool. For scalabil-
ity purposes, the design decouples resource initialization
(such as execution context startup) from storing the
persistent information relevant to these resources (such
as execution context parameters) and monitoring these
resources. In addition, in order to deal with unexpected
changes in resource availability, a publish/subscribe
mechanism is used to track these resources, and notify
registered components when changes happen. The persis-
tent state components and the data associated with them
are decoupled from the front end, as well as the back-
end tool agents, and include a policy service, session
management services, event management, and persistent
data storage.

Policy service management components direct the
response of the parallel tool to state changes, whether
this be a front-end agent connecting or disconnecting, an
unexpected change in the resources available to a running
application, orderly shut-down, or other changes. They
are responsible for maintaining consistent policies across

the entire running job. These components implement the
policies set by the parallel tool.

Session management services maintain session consis-
tency and provide support for attaching front ends with
the session information needed to interact with the run-
ning sessions, whether this be for monitoring purposes or
for interacting with the running STCI application. These
services also manage the information need for merging
existing sessions.

Event management components include components
used to detect relevant events and are intended to take
advantage of monitoring capabilities provided by the
system. A publish/subscribe mechanism is designed to
inform the subscribed elements asynchronously when
relevant events occur.

Persistent data storage components are used to main-
tain persistent data storage and to allow for storage
strategies to be tailored to particular needs, without hav-
ing to provide new implementations for the components
that use this data.

VIII. SECURITY

The security services provided by STCI are respon-
sible for managing and controlling interaction between
users, tools, applications, and system resources accord-
ing to the policies within a single security domain.
This is in contrast to other security mechanisms such
as the Distributed Computing Environment (DCE) and
Grid Security Infrastructure (GSI), which operate across
multiple security domains. The component architecture
of the STCI reference implementation allows different
components to be used to support multiple policies
within a single domain.

The STCI can operate in two security modes: system
mode and user mode. In system mode, the infrastruc-
ture is established at system startup and runs with
elevated privileges. In user mode, the infrastructure is
bootstrapped when the tool (or application) is launched
and runs with normal user privileges. An infrastructure
running in system mode can provide services to multiple
tools, initiated by different users, simultaneously. This
necessitates a more stringent security model than that
required when running in user mode.

The security services provided by STCI include the
following:

• Session authentication. A tool must supply creden-
tials to STCI when a session is first created or
when reconnecting to an existing session. Agent-
initiated connections to the infrastructure must also
be authenticated. The credentials are authenticated
by using policies for the local security domain.

• Service authorization. Once authenticated, a tool
has access to services for which it has authorization.
In particular, this service guarantees that a tool



will not have access to any greater privileges that
would normally be available to a particular user. A
component that is performing services on behalf of
a tool (for example, requesting system resources),
must use this service to ensure that the action is
authorized.

The STCI security model has been deliberately kept as
simple as possible to avoid conflicting with any existing
security mechanisms. In addition, STCI does not provide
any services for data encryption or data integrity.

IX. CONCLUSION

The development of efficient and scalable tools for
high-performance computing (HPC) has always been a
challenge. With the emergence of petascale platforms
and the next-generation exascale systems, it is now
becoming critical. The lack of a standard for HPC tool
infrastructure has resulted in myriad implementations,
but few have addressed the scalability and portability
demands that these new systems will place on tool
developers.

This paper presents the architecture of the Scalable
Tools Communication Infrastructure (STCI), which aims
to provide a simple, modular, and standard infrastructure
for the implementation of scalable run-time systems
and tools for high-performance computing, especially
targeting peta- and exascale platforms.

STCI provides a standard API that tool developers can
use to ensure their tools remain portable and scalable
across a wide range of architectures. The infrastructure
is composed of components for scalable communications
and process control services that address five main
areas: execution contexts, communications, sessions, per-
sistence, and security. These basic services provide all
needed mechanisms and policies for the implementation
of scalable tools, the management of communications in
a scalable manner, and the management of user session
and security issues.

Using this architecture, STCI provides a unifying plat-
form for the implementation of a wide variety of tools
for high-performance computing. These include support
for scalable debuggers, run-time support for parallel
programming libraries such as MPI, and support for
scalable operating system tools such as fault-tolerance
frameworks.
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